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JEAN-FRANCOIS DAT AND THOMAS LANARD

ABsTrRACT. We consider the category of depth O representations of a p-adic
quasi-split reductive group with coefficients in Z[%]. We prove that the blocks
of this category are in natural bijection with the connected components of
the space of tamely ramified Langlands parameters for G over Z[%]. As a
particular case, this depth 0 category is thus indecomposable when the group
is tamely ramified. Along the way we prove a similar result for finite reductive
groups. As an application, we deduce that the semi-simple local Langlands
correspondence m +— @5 constructed by Fargues and Scholze takes depth 0
representations to tamely ramified parameters, using a motivic version of their
construction recently announced by Scholze. We also bound the restriction of
@ to tame inertia in terms of the Deligne-Lusztig parameter of © and show,
in particular, that ¢, is unramified if 7 is unipotent.

1. MAIN RESULTS

We prove two results on the representation theory of finite reductive groups and
on that of p-adic reductive groups. We first state these results and then explain
our motivations and some connections to the existing literature.

1.0.1. Theorem (Theorem [2.0.1). Let G be a reductive group over F, and F the

Frobenius map associated to a Fyr-rational structure for some r = 1. Then the

category Repz[l](GF) 1s indecomposable. Equivalently, the central idempotent 1 in
P

Z[%] GF is primitive.

This result initially appeared as one step in our study of the p-adic case below.
We have decided to single it out because the statement is simple and quite natural.
It might be an interesting problem to try and devise criteria for a similar statement
to hold true for an abstract finite group G and a prime divisor p of |G|.

Let now G be a reductive group over a local non-archimedean field F with
residue field kp := Fpr. We put G := G(F). For any commutative ring R in
which p is invertible, we denote by Repr(G) the category of smooth RG-modules.
The Bernstein center 3 z(G) is by definition the center of this category. We refer to
subsection [3.1] for the definition of depth 0 smooth RG-modules. They form a direct
factor subcategory Rep’%(G), which corresponds to some idempotent £y € 3z(G).
The following statement is a sample of what we prove about Rep%[l](G).

p

1.0.2. Theorem (Theorem 3.6.1). Suppose that G is quasi-split and tamely ramified
over F. Then the abelian category Rep%[l](G) 1s indecomposable. FEquivalently, g

is a primitive idempotent of 32[;](G).
P

This result was mainly inspired by its “dual” counterpart in [DHKM20], where
the moduli space Z1(W2, G) of Langlands parameters for G was constructed over
Z[%] and studied. Concretely, Z(W2, G) classifies 1-cocycles W2 — G where :
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e G denotes the dual group of G, considered as a split pinned reductive group
scheme over Z[}%], and endowed with an action of the Galois group I'r of
F that preserves the pinning

e W2 C Wr C I'p is some modification of the Weil group of F.

In [DHKM20], this moduli space is decomposed according to the restriction of 1-
cocycles to the wild inertia subgroup Pr C W. In particular, the “tame” summand
ZY WY, (A})tame parametrizes 1-cocycles whose restriction to P is locally (for the
étale topology) conjugate to the trivial cocycle. According to [DHKM20, Thm
4.29], this summand is connected, provided that G is tamely ramified. Since tame
parameters are supposed to correspond to depth 0 representations by any form of
local Langlands correspondence, we like to see the last theorem as the group side
analogue of this connectedness result on the parameter side. Interestingly, the proof
of [DHKM20, Thm 4.29] consists in, first, classifying the connected components of
ZY WY, (A})f tame for each ¢ # p, and then, using different £’s to get the result.

Zp>

Similarly, one way to formulate the indecomposability of Rep%[l](G) is as follows
P

(we refer to for the notion of ¢-block used here).

1.0.3. Corollary. Under the same hypothesis on G, given m, 7" two irreducible

QG-modules of depth 0, there is a sequence of primes ly,--- ¢, and a sequence
To = W, 71, , T =7 of irreducible QG-modules such that m;_1 and m; belong to
the same €;-block for each i =1,--- r.

We note that Sécherre and Stevens have used in [SSI9] a similar statement in
the context of inner forms of GL(n) (but for arbitrary “endoclasses”) in order to
gain control on the Jacquet-Langlands correspondence for complexr representations.
This provides a striking example of how to use this kind of results for problems a
priori unrelated to congruences. The application we give in below is actually in
the same vein.

Meanwhile, let us observe that it is not always true, even for G a torus, that
the tame summand of Z'(W2, G) is connected. In Theorem we work out

the decomposition of Z 1(Wg,é)tame into connected components for general G,
and we prove in particular that these connected components are simply transitively
permuted by a certain abelian p-group of “central cocycles”. On the other hand,
in Theorem [3.6.2] we work out the decomposition of Rep%[%](G) into a product

of blocks for quasi-split G, and prove that these blocks are simply transitively
permuted by a certain abelian p-group of characters of G. After identifying these
two p-groups and matching the principal component with the principal block, we
then conclude:

1.0.4. Theorem. Assume G is quasi-split over F'. Then there is a natural bijection
between connected components of Z* (W2, G)tame and blocks of Rep%[l](G).

Again, this implies that, under the same quasi-splitness hypothesis, a 7w € Irr@(G)
of depth 0 can be connected to a depth 0 character of p-power order through a
sequence of “congruences” modulo different primes.

For a non quasi-split group G, there is in general an additional “relevance” con-
dition on 1-cocycles for them to provide Langlands parameters of G. Although
this relevance condition might mess up with connected components, we believe it
does not actually happen, i.e. the above result should be true with no quasi-split
assumption. As evidence for this expectation, we prove:

1.0.5. Theorem (Corollary |3.4.4)). Suppose that p does not divide |71(Gaer)| and
the torus G,p := G /[G, G| is Pp-induced. Then Rep%[l](G) is indecomposable.
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This is in accordance with the fact that, if p does not divide |mo(Z(G))| and
(Z(G)°)FF is connected, then Z} (W2, G)tame is connected.

1.1. Some applications to the Fargues-Scholze semisimple correspondence.
Among the major recent breakthroughs towards constructing the conjectural local
Langlands correspondence for a p-adic group G, Fargues and Scholze [FS21] have
recently used new geometric tools to attach to any irreducible representation 7w of
G, a semisimple local Langlands parameter ¢,. Their construction is compati-
ble with parabolic induction and local class field theory, so that, for example, the
semisimple parameter attached to an “unramified principal series” is indeed unram-
ified, as expected. However it is in general very difficult to say anything on this
parameter, especially when 7 is cuspidal. For example, it is not a priori clear that
@r is tamely ramified whenever 7 has depth 0. Fargues and Scholze’s construction
actually provides a map FSy

O(Z (WP, G))E = Exe(WP, G)z, =% 35, (G)

for each prime ¢ # p. Here, Exc(WY, (A}) denotes the so-called “excursion algebra”

over Z[%}, and the symbol ~ denotes a universal homeomorphism to O(Z1 (W2, G)©
(thus inducing a bijection on geometric points and on sets of connected compo-
nents). The (A}(@Z) conjugacy class of semisimple parameters @, associated to
™ € Irrg, (G) is then given by the Qy-point of Z1 (WY, G) // G obtained by compos-
ing F'S, with the infinitesimal character 37, (G) — Endg, (7) = Q. In particular,
this construction is compatible with congruences mod ¢. Thanks to the description
of the connected components of Z (W2, G))Z in [DHKM20), Thm 4.8], this implies
for example that if 7, 7’ belong to the same block of Repg, (G), then the restrictions
of ¢, and ¢, to the prime-to-¢ inertia subgroup I% coincide.

In order to control ¢, for a depth 0 irreducible representation 7, one would like
to use congruences modulo different primes, as encapsulated in our main results
above. This supposes to have some form of “independence of ¢’ for the Fargues-
Scholze semisimple correspondence. Recently, Scholze [Sch25| has announced a
solution to this problem that uses a version of his work with Fargues with motivic
coefficients. For our purposes, the upshot is that the family of maps FS, for ¢ # p
is induced by base change from a map FS;,.; as follows

O(Z' (Wp, G)F ¢ Exc(W, G) 2% 35,(Q).
The following is a consequence of Theorem [1.0.4]

1.1.1. Corollary. Take the ezistence of FSyoy for granted and assume that G is
quasi-split. Then the Fargues-Scholze parameter ¢, of a depth 0 irreducible repre-
sentation 7 is tamely ramified.

Let us spell out the argument in the case where G is tamely ramified, so that, by
Theorem the depth 0 projector is actually a primitive idempotent in 32[ 1) (@).
P

Then the spectrum of 5032[ 1 ](G) is mapped into a single connected component of
P

Z'W9,G) / G under FS;,,. In other words, ¢, has to be a geometric point of
the same connected component of Z!(W2, G) // G as any other ¢, attached to a
depth 0 irreducible representation 7’. Take for 7’ an unramified principal series, for
example the trivial representation. As recalled above, compatibility with parabolic
induction and local class field theory implies that ¢,/ is unramified, hence it is a
geometric point of the tame summand Z* (I/VI(%7 (A})tame, and it follows that the same

is true for .. The general case is similar but requires additional notation, see
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Actually, when G is tamely ramified, further considerations based on congruences
provide some extra information about the Fargues-Scholze parameter ¢, of any
depth 0 irreducible representation 7 over an algebraically closed field L over Z[%]
Namely, after choosing a generator 7 of the tame inertia group Ir/Pp, we get a
T-twisted conjugacy class ¢, (7) in é(L), which corresponds to an L-point of the
finite scheme (é XT/ é)Fr:(')q. On the other hand, using type theory and Deligne-
Lusztig series, we can directly associate to m an L-point s, of the same finite scheme
(see note that this Deligne-Lusztig point also depends on 7, now seen as a
choice of trivialization of roots of unity in k). It is then expected that ¢ (7) = sy
Our considerations here provide the following modest contribution to this question:

1.1.2. Theorem. Assume that G is quasi-split and tamely ramified, and that kg #
Fy. Then, with the above notation, any prime divisor £ of the order of pr(7) divides
the order of s. In particular, if 7 is unipotent (i.e. sy = 1), then @, is unramified.

Here is a sketch of the argument. Using parabolic induction and its compatibility
with the map FS,t, we may argue by induction on the rank of G and focus on
the case where 7 is supercuspidal. A bit of representation theory then allows us to
reduce to the case L = Q and 7 having an admissible Z[;]-model. Then we use
induction on the number of primes dividing the order of s,, and the crucial case
is when this number is 1, i.e. when 7 is unipotent. In this case, suppose we can
find two maximal ideals £; and Lo in Z[%] with respective residue characteristic
01 # l9, such that the block that contains 7 [mod £;] also contains a non-cuspidal
unipotent representation. Then, using our induction hypothesis and the description

of connected components of Z1 (W2, CA-})Z@ in [DHKM20, Thm 4.8], we see that both

restrictions of ¢, to Ifii, i = 1,2 are trivial, and it follows that ¢, is unramified.
Now, the problem of finding two such primes can be reduced to the analogous
problem for unipotent cuspidal representations of a finite group of Lie type, where
we check existence whenever the base field is not Fy. The detailed argument is
given in Section [3.11

The two above results are consequences of a few formal properties of the Fargues-
Scholze construction, and say nothing on the non-triviality of the map 7 +— ¢,. In
order to say anything on this matter, one obviously needs to really work (hard!) on
the construction itself. Recently, Tony Feng proved a remarkable property along
these lines, that we extract from Theorem 10.4.1 of [Fen24] and the subsequent
remarks therein. Assume that G(F') contains an element of prime order ¢ whose
centralizer is an unramified maximal torus T of G. Let L have characteristic £ and s
be an L-point of (G //G)™=0)" in the image of the map T™=0)" — (G G)=0)",
Then there is 7 € Irry,(G) such that (1) = s = sz. Moreover, if s is strongly
regular, then any 7 with s, = s satisfies ¢, (7) = s,. The techniques used by Feng
are bound to positive characteristic coefficients, but the last theorem above allows
to lift to characteristic 0 under favorable circumstances.

1.1.3. Corollary. With Feng’s hypothesis above on G and T, let s be a Q-point of
(G ) G)F=0) in the image of the map TF=0" — (G /) G)F*=0)° and of order
prime to L. Then there is m € Irrg(G) such that o (T) = s = s;. Moreover, if s is
strongly regular, then any m with s = s satisfies - (T) = $x.

2. FINITE GROUPS

Let G be a reductive group over E, and F the Frobenius map associated to a
F,-rational structure on G, where ¢ = p” for some r > 1. The goal of this section
is to prove the following theorem.
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2.0.1. Theorem. The category Repz[%](GF) is indecomposable. FEquivalently, the
central idempotent 1 in Z[%] GF is primitive.

2.1. General facts on blocks of finite groups. Let us start with an abstract
finite group G. For any commutative ring A, denote by Rep, G the abelian category
of AG-modules. Recall that a block of AG is an indecomposable direct summand
of the category Rep,G. These blocks correspond bijectively to indecomposable
two-sided ideals of the ring AG which are direct factors and to primitive ideals in
the center Z(AG) of the ring AG, which is also the center of the category Rep,G.
Note that the center Z(AG) is the submodule of G-invariant elements in AG, so
that any base change map A’ ® Z(AG) — Z(A'G) is an isomorphism.

For a prime /, the center Z(Z,G) is finite over the Henselian local ring Zg,
hence the reduction map Z(Z,G) — Fy ®7z, Z(Z4G) = Z(F,G) induces a bijection
on primitive idempotents, whence a bijection between blocks of F,G and of Z,G.
The decomposition of Repz G as a direct sum of blocks induces a partition of

the set Irrg (G) of isomorphism classes of simple Q¢G-modules. The action of

the group of automorphisms of the field Q, on the group algebra Q,G preserves

the integral algebra Z,G, hence its action on the set Irr@(G) preserves the above

partition (permuting the parts). It follows that this partition can be transported

unambiguously to a partition of the set Irr(G) of irreducible complex representations

of G. Each factor set occurring in this partition will be called an ¢-block of Irr(G).

Here is another point of view on ¢-blocks of Irr(G). In CG we have the decom-
dimm

position 1 =3 1 o er of 1, where e, = GG 2gea tr(m(g))g are the primitive

central idempotents of CG. As the formula shows, each e, belongs to Z[ﬁ]G

so that this decomposition of 1 actually holds in Z[ﬁ]G. Denote by |G|, the
prime-to-£ factor of |G|, and declare that a subset I C Irr(G) is f(-integral if
Y orcrr € Z[ﬁ]G. Clearly, ¢-integral subsets of Irr(G) are stable under tak-
ing unions, intersections and complementary subsets.

2.1.1. Lemma. The ¢-blocks of Irr(G) are the minimal non-empty £-integral subsets.

Proof. Since both the property of being an ¢-block and of being f-integral are
invariant under field automorphisms, we may transport the statement to Irr@(G)
where it follows from the fact that for any block B of Repz, G, the corresponding

primitive central idempotent ep in Z(Z,G) is given by ep = Zwelrr@ (@)np €r O
e

Let us denote by ~, the equivalence relation on Irr(G) whose equivalence classes
are the ¢-blocks. Now, fix a prime p, and denote by ~ the equivalence relation
generated by all ~; for £ # p. Explicitly, we thus have m ~ 7’ if and only if there
exist £1,...,¢, a sequence of primes different from p and my,--- ,m.—1 € Irr(G) such
that

!
Ty, T gy Ty mogy = rog T

2.1.2. Proposition. The ~-equivalence classes are the minimal non-empty subsets
I C Irr(G) such that ey := ) ;e € Z[%]G. Moreover, the map I — ey is a

bijection from Irr(G)/ ~ onto the set of primitive idempotents on[%]G.

Proof. Follows from the previous lemma and the equality Z[%]ﬂi[ﬁ] = MNep Z] i G1|z/ ]
O

Specializing our discussion to the case G = GF, the last proposition shows that
proving Theorem [2.0.1]is equivalent to proving that there is only one ~-equivalence
class in Irr(GF). Before doing so, we need a recollection of Deligne-Lusztig theory.



6 JEAN-FRANCOIS DAT AND THOMAS LANARD

2.2. Blocks of finite reductive groups. Fix a reductive group (G*,F*) over
F, that is dual to (G,F) in the sense of Lusztig. Using their “twisted” induction
functors, Deligne and Lusztig define a partition Irr(GF) = | |, £(GF, s) of irreducible
reprgsentations *into “Deligne-Lusztig series” associated to semisimple elements s of

«F «F . . . . .
G uptoG -conjugacy. Note that this partition depends on certain compatible
choices of roots of unity, but these choices will be irrelevant to our matters.

For a prime ¢ # p and a semisimple element s € G*F* of order prime to ¢, we
put
£(GF,5) == ] £(GF1),
ty=s
where ty denotes the prime-to-¢ part of ¢ (i.e., we write t = typty in (t), with ¢, of
order a power of £ and ¢y of order prime to £). The following fundamental results
are due to Broué and Michel, resp. Hiss, and are stated in [CE04, Thm. 9.12].
(1) &(GF,s) is a union of £-blocks.
(2) For each ¢-block B such that Irr(GF, B) C &(GF, s), one has Irr(GF, B) N
E(GF,s) #0.
From these results we easily deduce the following fact.

2.2.1. Proposition. Any representation m in Irr(GF) is ~-equivalent to a repre-
sentation in E(GT,1).

*

Proof. Let s be a semisimple element in G*F such that 7 € 5(GF, s), and let ¢ be
a prime that divides the order of s. Note that ¢ # p. As above, denote by sy the
prime-to-¢ part of s. Then (2) above tells us that the £-block containing 7 intersects
E(GF, sp). Therefore, the ~-equivalence class of 7 intersects £(G',s4) too. But
the order of sy is the prime-to-£ factor of the order of s. So, arguing inductively on
the number of prime divisors of the order of s, we conclude that the ~-equivalence
class of 7 intersects £(GF,1). O

Let us now denote by ~! the equivalence relation on £ (GrF7 1) defined in the same
way as ~, with every intermediate representation 7; taken in &£ (GF, 1). By the last
proposition, in order to prove Theorem it suffices to show that £ (GF7 1) has

a unique ~!'-equivalence class.

2.2.2. Proposition. Let G,q be the adjoint group of G, denote by m : GF — sz
the natural map and by w* the associated pullback on representations. Then 7*
induces a bijection on unipotent representations E(ng,l) = &(GF,1) that is
compatible with ~'-equivalence on both sides.

Proof. The fact that 7* induces a bijection on unipotent representations is clear
from the very definition of these representations. Moreover, for a prime ¢ differ-
ent from p, [CE04, Thm. 17.1] tells us that G and G.q" have the same num-
ber of unipotent ¢-blocks and that 7* : Z&(Gaa",1) — ZE&(GF,1) preserves
the orthogonal decomposition induced by ¢-blocks. It follows that the bijection
™ E(ng, 1) =+ £(GF,1) on unipotent representations is compatible with the
respective /-block partitions. Since the ~!-equivalence classes are the subsets which
are stable under ~y-equivalence for ¢ # p and minimal for this property, 7* is also
compatible with the partition into ~!-equivalence classes. ]

This proposition allows us to reduce the general case to the case where G is
of adjoint type. But a group of adjoint type is a direct product of restriction of
scalars of simple groups [Conl4, Prop. 6.4.4 and Rk. 6.4.5]. So, in the sequel we
may restrict attention to simple groups. It turns out that in some cases, there is a
quick argument using 2-block theory.
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2.2.3. Theorem. Suppose q is odd and G has type A,,, 2A,,, B,,, C,,, D,, or?D,,.
Then 5(GF, 1) is composed of only one ~-equivalence class.

Proof. Indeed, by [CE04, Thm. 21.14], £(GF,1) is included in the principal 2-block.
So all the unipotent representations are already ~s-equivalent. O

In order to deal with g even and the exceptional groups, we need to recall more
results about blocks that contain a unipotent representation.

2.3. d-series. The unipotent ¢-blocks can be obtained using d-Harish-Chandra the-
ory, which provides a partition of £(GF,1) into d-series, and where d > 1 is an
integer. When d = 1, the 1-series are the usual Harish-Chandra series constructed
via parabolic induction. In general, they are defined through an analogous pattern,
relying on Deligne-Lusztig induction and the following definitions.

e An F-stable Levi subgroup of G is called a d-split Levi subgroup if it is the
centralizer of a ®4-torus, i.e. an F-stable torus S such that | ST | = ®4(¢")
for a certain @ > 1 and all n > 0 with n = 1 (mod a). Here, &4 denotes
the d-cyclotomic polynomial.

e An irreducible representation 7 € Irr(GF) is called d-cuspidal if for all
proper d-split Levi subgroups L and all parabolic subgroups P with Levi
L, the Deligne-Lusztig twisted restriction * R p[r] vanishes.

e A d-cuspidal pair for G is a pair (L,o) with L a d-split Levi subgroup of
G and ¢ € Irr(LF) d-cuspidal.

e The d-cuspidal support of w € Trr(GF) is the set of all d-cuspidal pairs (L, o)
such that 7 appears with non-zero multiplicity in the virtual character
RECP[U]'

According to [BMM93, Thm 3.2], the d-cuspidal support of any unipotent 7 €
E(GF,1) consists of a single GF-conjugacy class of d-cuspidal pairs (L, o). We thus
get a partition of & (GF, 1) labeled by conjugacy classes of unipotent d-cuspidal
pairs. The summands appearing in this partition are called d-series. The remark-
able relevance of d-series to the study of /-blocks is summarized in the following
statement.

2.3.1. Theorem ([CE94, Thm. 4.4]). Let ¢ be a prime not dividing q and let d be
the order of q in F,. We assume that £ is odd, good for G, and £ # 3 if 3Dy is
involved in (G, F). Then, the map B — BN S(GF, 1) induces a bijection

{¢-blocks B C £(GF,1)} = {d-series in E(GF,1)}.

This theorem suggests the following strategy to prove that £ ((-}F7 1) has only
one ~!-equivalence class. If D C N* is a finite set of non-zero integers, define a
D-series as a subset of £(GF, 1) that is a union of d-series for each d € D, and
which is minimal for this property.

2.3.2. Lemma. Suppose there exists D such that
(1) £(GF,1) is a D-series.
(2) Each d € D is the order of ¢ modulo some ¢ as in Theorem|2.5.1]

Then £(GF,1) consists of a unique ~'-equivalence class.

Proof. Use (2) to pick a prime ¢, satisfying the assumptions of Theorem and
such that ¢ has order d modulo ¢4, for each d € D. Then (1) tells us that £(GF, 1)
is the only non-empty subset of itself that is stable under ~,-equivalence for all
d € D. A fortiori, it is the only non-empty subset of itself that is stable under
~-equivalence for all primes ¢ # p. Hence it is a single ~'-equivalence class. [0
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Finding a suitable D will be done below via a case-by-case analysis (recall that
we have reduced to the case where G is simple). Then, in order to find suitable
primes, the following result will be useful.

2.3.3. Theorem ([BV04, Thm. V]). For any d > 3, there exists a prime number £
such that q has order d modulo ¢, with the exception of (q,d) = (2,6).

Note that if d is the order of ¢ modulo ¢, then obviously ¢ > d. We now proceed
to the case-by-case analysis.

2.3.4. Theorem. If G has type A,, or 2A,, then €(GF, 1) is composed of only one
~equivalence class.

Proof. The case g odd is covered by Theorem [2.2.3] so let us assume ¢ even. Since
q + 1 is odd, any prime divisor £ of ¢ + 1 is odd and good for G, and the order of
g modulo ¢ is 2. Therefore Theorem tells us that the f-blocks of £(GF, 1) are
the 2-series.

Now, for type A,, (split case), it is well known that £(GF,1) is a single 1-series.
Now for type 2A,, we can use an “Ennola duality” [BMM93, Thm 3.3| to reduce
ourselves to the case of A,,. More specifically, [BMM93, Thm 3.3] implies that
there is a bijection between the set of unipotent characters for a group of type A,,
and that of 2A,,. This bijection sends d-series to d’-series, where d’ is such that
Dy (—x) = eDy(z) with e € {£1}. Since P3(—z) = —z +1 = —P4(z), it sends
1-series to 2-series. It follows that in type 2A,,, the set <’5'(GF7 1) is a single 2-series.
Therefore it is a single ¢-block for £|(q+ 1) hence also a single ~!-equivalence class.

Similarly, when ¢ > 2, any prime ¢ dividing g — 1 is odd and good for G, hence
Theoremtells us that the £-blocks of £(GF, 1) for £|(q— 1) are the 1-series. In
type A,, and for such an ¢, it follows that the set £ (GF, 1) is a single ¢-block hence
also a single ~!'-equivalence class.

It remains to deal with the case ¢ = 2 in type A,,. In this case, we will show
that £(GF, 1) is a {2, 3}-series, and then we can conclude using Theorem and
Lemma [2.3.2] To compute {2, 3}-series for A,,, we again use Ennola duality, which
asserts that they correspond bijectively to {1,6}-series for ?A,,. These {1, 6}-series
have been computed in [Lan23| Section 3.3], to which we refer for the notion of
“defect” of a 1-series. In particular, [Lan23| Prop. 3.3.11] shows that there is a
unique {1, 6}-series for 2A,, provided we can prove that the defect k of any 1-series
of 2A,, satisfies (k? — 3k + 2)/2 < n — 2. But by [Lan23, Lem. 3.3.8], we at least
have k(k +1)/2 < n+ 1. Since (k* — 3k +2)/2 = k(k + 1)/2 — (2k — 1), we thus
get the desired equality if 2k — 1 > 3, that is k£ > 2. Moreover, for k£ = 1, we have
(k? — 3k +2)/2 = 0, thus the desired inequality also holds. O

2.3.5. Theorem. If G has type B,,, C,,, D,, or 2D,, then 5(GF7 1) is composed of
only one ~'-equivalence class.

Proof. Again, the case g odd is covered by Theorem [2.2.3] so we assume ¢ is even.
Picking a divisor of ¢ + 1 and applying Theorem [2.3:3] to d = 4, we see thanks to
Lemma that it suffices to prove that £(GF, 1) is a single {2, 4}-series.

We will first exhibit a bijection between {2, 4}-series and {1,4}-series, which will
leave us with actually proving that £(GF,1) is a single {1,4}-series

To do so, we use the combinatorics of Lusztig symbols as in [Lan23, Section
3.4]. Let ¥ = {S,T} be a symbol (S,T C N). We define S, to be the subset of S
composed of the even elements, that is S, := SN 2N, and S, for the subset of odd
elements, S, := SN (2N 4+ 1). We do the same thing for 7', T' = T, UT,. Now,
we define an involution ¢ on symbols by ¢(X) := {S. UT,,T. US,}. Note that
rank(X) = rank(p(X)) and that defect(X) and defect(p(X)) have the same parity.
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In the case of D,, or 2D,,, when the defect is even, the congruence modulo 4 is not
necessarily preserved by ¢. However, the congruence mod 4 of defect(p(X)) only
depends on the congruence modulo 4 of defect(X) and rank(X). Indeed

defect(p (%)) — defect(X) = [[Se| + |To| — |So| — [Te|| = [|Sel + [So| — [Te| — [Toll-

Thus, the congruence modulo 4 of defect((X)) — defect(X) depends on the parity
of |S,| + |To| (or |Se| + |Te|). Since the defect is even, |S| + |T| is even, hence

|So| + |To| = |Se| + |Te| (mod 2). Now,
RIS
2

rank(E):g x+§ y+
S+ 1T =1\
(2)] (mod 2).

z€eS yeT
But, |S| + [T is even, |S| + |T| = 2k and [((|S]| + |T| — 1)/2)?] = k(k — 1) is even.
Thus defect(p(X)) — defect(X) only depends modulo 4 on the parity of rank(X).

Now, under the involution ¢, 1-hooks correspond to 1-co-hooks and 2-co-hooks
to 2-co-hooks. Hence, ¢ sends {2, 4}-series to {1,4}-series, as claimed above.

We now prove that £(GF, 1) is a {1, 4}-series in the different cases.

For G of type B,, or C,,, by [Lan23, Prop. 3.4.6], we need to show that if we
have a 1-series of defect k then (k* —4k+3)/4 < n—2. If we have a 1-series of defect
k and rank n then (k? —1)/4 < n. Since (k? —4k+3)/4 = (k* —1)/4— (k—1), we
get the desired equality if k — 1 > 2, that is k > 3. For k =1, (k> — 4k + 3)/4 = 0,
thus the desired inequality also holds.

For G of type D,, or 2D,,, by |[Lan23 Prop. 3.4.6], we need to show that if we
have a l-series of defect k then (k? — 4k +4)/4 < n — 2. If we have a l-series of
defect k and rank n then k?/4 < n. Since (k% — 4k +4)/4 = k*/4 — (k — 1), we get
the desired equality if k —1 > 2, that is k > 3. For k = 2, (k* —4k+3)/4 = 0, thus
the desired inequality still holds. O

Y

thus

rank(X) = |S,| + |To| +

2.3.6. Theorem. If G has type Fy, 3Dy, Go, Eg, 2Eq, E; or Eg then £(GF, 1) is
composed of only one ~'-equivalence class.

Proof. First, let us begin by G of type *Dy, Eg, 2Eg or E;. To use Theorem
we need to have ¢ > 5. Thus by Theorem [2.3:3] we can use every d > 3 and
d # 6. Looking at the list of unipotent characters in [Car93l §13.9] and tables of
d-series in [BMMO93], we see that we may apply Lemma with the following
sets: D = {3,12} for ®Dy, D = {3,4} for Eg, D = {3,4,12,18} for ?Eg and
D = {3,4,14} for E;.

For Eg, we need ¢ > 7 to use Theorem [2.3.1] We will again conclude with
Lemma by looking at tables. If ¢ # 2, we can take d > 5 by Theorem [2.3.3
and D = {5,6,7,8,10,30} works. If ¢ = 2, we can take this time d > 3 d # 4,6
(since the order of 2 modulo 7 is 3) and we choose D = {3,5,8,10,15}.

For Fy4, the same methods apply for ¢ # 2 with D = {3,4, 6,12} (we can choose
any d > 3). When ¢ = 2, Lemma is not enough to conclude. The set of d
such that ¢ is of order d modulo some ¢ > 3 is d > 3 and d # 6 by Theorem [2.3.3]
However, the two unipotent characters ¢ ¢ and ¢g ¢ (with the notations of [Car93)
Section 13.9]) are d-cuspidal for every d > 3, d # 6. The rest of the unipotent
characters £(GF, 1)\ {#9,6: P96} form a {3,4,8,12}-series. To deal with ¢g 5 and

0.6, we take £ = 3, and they are in the principal 3-block of F4(2) by [His97].
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We are left with Go. If ¢ is odd, we can take d > 3. The two unipotent characters
¢ 53 and ¢ 3 are d-cuspidal for every d > 3 and E(GF, 1)\ {#13, 073} is a {3,6}-
series. We take ¢ = 2 and the tables in [[IS92] give us that ¢j ; and ¢/ 5 are in
the principal 2-block. This concludes the case ¢ odd. Now, if ¢ is even and ¢ # 2,
we can still use d > 3. Thus, we have the same issue with ¢} 5 and ¢} ;. We can
no longer use £ = 2 but we can use £ = 3, and the tables in [HS90] gives us that
1.3 and ¢ 5 are in the principal 3-block. Finally, if ¢ = 2, we can now use d > 3
and d # 6. All the unipotent characters are in the principal 3-series apart from
1.3) @13, #2,1 and Ga[—1]. But we see in [HS90] that they all are in the principal
3-block.
U

We have now completed the proof of Theorem for all reductive (G, F).
Indeed, by Proposition [2.1.2] the statement of this theorem is equivalent to the
statement that there is only one ~-equivalence class in Irr(GF). Then Proposition
shows it is enough to prove that there is only one ~!-equivalence class in
E£(G",1), and Proposition reduces to the case of simple (and adjoint) G. All
the simple cases are then covered by Theorems [2.2.3] [2.3.4] [2.3.5] and [2.3.6]

3. p-ADIC GROUPS

Here G is a reductive group over a local non-archimedean field F' with residue
field kp = F;. We put G := G(F). For any commutative ring R in which p
is invertible, we denote by Repy(G) the category of smooth RG-modules. The
Bernstein center 3z(G) is by definition the center of this category.

3.1. The depth 0 summand. Denote by B the (reduced) Bruhat-Tits building
associated with G. This is a polysimplicial complex equipped with a polysimplicial
action of G. We will write B, for the set of polysimplices of B, which are also
called facets. To any facet o of B is associated a parahoric subgroup G,, which
is open, compact and contained in the pointwise stabilizer of o. It is the group
G, (OF) of Op-valued points of a certain smooth Op-model G, of G. We denote
by G, the reductive quotient of the special fiber of G,. Then G, := é,,(]Fq) is
also the quotient of G, by its pro-p-radical G}'. Since G is open and pro-p, there
is an averaging idempotent e} € Hp(G,) C Hr(G) in the Hecke algebra Hp(G)
of G with coefficients in R. Here Hr(G) denotes the R-algebra of locally constant
R-valued distributions on G, which acts on any smooth RG-module V, and e}
denotes the distribution that averages a function over G}.

3.1.1. Definition. A smooth RG-module V has depth 0 if V =3 erV.

zEBy T

Here By is the set of vertices of B. It is known [Dat09, Appendice A] that the
full subcategory Rep%(G) of Repg(G) composed of depth 0 objects is a direct fac-
tor abelian subcategory. Correspondingly, there is an idempotent ey € 35(G) that
projects any object V onto its depth 0 factor. When R = C, the Bernstein decom-
position of Rep(G) as a sum of blocks was made explicit by Morris in [Mor99].

3.2. (un)refined depth 0 types. Following Moy and Prasad, we define an unre-
fined depth 0 type to be a pair (o, 7), where o € B, is a facet and 7 is an irreducible
complex cuspidal representation of G,. We also denote by 7 the inflation of 7 to
Gy. Then [Mor99, Theorem 4.8] tells us that indgg () is a projective generator for
a certain sum of Bernstein components of depth 0. Obviously, this representation
only depends on the G-conjugacy class t of (o, 7), whence a direct factor Repg(G)
of Repg(G). Denote by ¥ the set of G-conjugacy classes of such pairs. It turns out
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that, for t,t' € T, the factors Repg(G) and Repé (@) are either orthogonal or equal.
Whence an equivalence relation ~ on T and a decomposition

Repc H Rep
[T/~
We refer to [Lan23, Section 2.2] for an explicit description of the relation ~.

In general, the factors Rep([é](G) are further decomposable. Suppose (o, 7) € [t]

and denote by G} the pointwise stabilizer of ¢ in the closed subgroup G*! of G
generated by compact subgroups (see [KP23 §7.7]). By [Mor99, Theorem 4.9],

for any irreducible subquotient 7! of 1ndG (7), the representation 1ndgl (m!) is the

projective generator of a single Bernstein block. Also, any block inside Rep([c] (GQ) is
obtained in this way. For later reference, let us notice that, since G /G, is abelian,

1
any other irreducible subquotient of indgj (7) is a twist of 7! by a character of

GL/G,.

3.3. Systems of idempotents. Fix t € ¥, and let [t| denote its equivalence class.
For a facet 7 € B,, define ey, € Hr(G) to be the idempotent that cuts out all
irreducible representations of G, whose cuspidal support contains (G,,7) for some
facet o containing 7 and 7 such that (o,7) € [t]. Then the system (ejy ;)res, is
0-consistent in the sense of [Lan23| Def. 2.1.4], that is :

(1) Vo € Bo, Vg € G, ef,g0 = ge[t]@g_l
(2) VT € B,, Yz € By, x € T = eq,r = ef e -
Moreover, Proposition 2.2.3 of [Lan23|] implies that

Repl (G) = {v € Repe(G), V=) e[thV} .

z€Bo
Denote by N the Le.m of all |G|, 7 € B,. Since each ey, lies in Hz[%](G), we

see that the summand Rep([ct] (G) is “defined over Z[+]” in the sense that the corre-
sponding idempotent ey of 3¢(G) lies in 32[L](G)7 and we have a decomposition

0
Repz[ 1] H RepZ[ 1]
[eT/~
Now, to a subset T' of T/ ~ we associate an idempotent ep := Z[t]eT gy €

37 1] (G) in the Bernstein center, and a consistent system of idempotents (er ;) -cn,
given by er, := Z[qu efy,r for any facet 7 € B,. The following observation is
crucial for the argument.

3.3.1. Proposition. We have er € SZ 1) (G) VT €B,, er, € Hz[;](GT),

Proof. As recalled above, the direct factor category associated to the idempotent
er is given by

5TRepz[%](G) = {V € RepZ % , V= Z ers } .

x€Boy

Moreover, its orthogonal complement in Rep%[ 1 ](G) is the category similarly as-
sociated to the complement subset T¢ of T in ¥/ ~. Therefore, if all er . are
Z[%]—valued, then so are all ere » = el — er ,, so the decomposition Rep%[%](G) =
ETRepz[%](G) X aTcRepZ[%](G) is defined over Z[%], hence the idempotents er
and ere belong to 32[ (G). Conversely, if ep € 32[%1(61), then the equality
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er, = er * ef in He(G) from the proof of Lemma 4.1.2 in [Lan23|, shows that
€T, v S HZ[l](G) O

Recall the notation £y introduced in[3.I]for the central idempotent corresponding
to the depth 0 factor.

3.3.2. Corollary. We have er € 32[1](G) if and only if T =T/ ~, i.e. if and only

if er = eg.

Proof. Suppose e € Si[l](G)' By the last proposition, for any facet 7 in B,,
P — —

the idempotent er , is inflated from a central idempotent of Z[%]GT. By Theorem

m there is no non-trivial central idempotent in Z[%]GT. So er . is either e} or
0. There is certainly a vertex x such that er , # 0, and thus ey, = e}. Then, for a
chamber ¢ containing z, we have er , = eIeT’x = e}. By G-equivariance it follows
that e, = e for all chambers, which implies e, # 0 and therefore ey , = e for

all facets. Hence er =¢g and T =T/ ~. O

When G is semi-simple and simply-connected, we have G, = G for all facets 7
so, from our discussion of depth 0 types above, each Repg](G) is already a block
of Rep2(G) and, therefore, any idempotent of £93¢(G) is equal to some er for
T C ¥/ ~. So we have proved :

3.3.3. Corollary. If G is semisimple and simply-connected, Rep%[l/p}(G) is a block
(equivalently, o is primitive in 371,(G)).

3.3.4. Remark. Asin the case of finite groups, this kind of results can be interpreted
at the level of irreducible QG-modules in the following way. For M € N* and
mE Irr@(G)7 denote by ejs,» the unique primitive idempotent of 5032[%]((?) that
acts as identity on m. So, if M = N (defined as above), ey » is also primitive in
3@(6‘) and defines the Bernstein component that contains 7. Let £ # p be a prime
and denote by Ny the prime-to-£ part of N. Then, for 7,7’ € Irr@(G), the following
properties are equivalent :

(1) ENym = ENy

(2) For any embedding Q < Q,, the base changed representations 7, 7’ belong

to the same block of Repz, (G).

This justifies calling the equivalence classes for the relation 7 ~; 7’ & en, » =
€N, = the L-blocks of Irr@(G). They correspond to minimal “¢-integral subsets”
of the set of Bernstein blocks. Similarly, the blocks of Repz[ 1 ](G) correspond to
minimal subsets of the set of Bernstein blocks that are f-integral for all ¢ # p.
In other words, the equivalence relation ~ generated on Irrg(G) by all ~, £ # p
satisfies m ~ 7’ < 7 and 7’ belong to the same block of Rep%[l] (G).

Now, to tackle the general case, we need to recall some facts about the quotients

GL/G.,.
3.4. The Kottwitz map. We first recall a definition of Borovoi :
71 (G) = X.(T)/(®") = coker(X,(Ts.) — X.(T)).

Here T is a maximal torus of G, ®V C X, (T) is the set of (absolute) coroots, and
T is the inverse image of T in the simply connected covering Gy, of the derived
group Gge, of G. Using the fact that all tori are conjugate, the group 1 (G) turns
out to be canonically independent of the choice of T. Moreover, if T is chosen
so as to be defined over F', then m1(G) gets a Z-linear action of the Galois group
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I'r = Gal(F/F). Again, this action does not depend on the choice of F-rational
torus T (although two such choices may not be G(F)-conjugate).

Now, let Ir C I'r denote the inertia subgroup and let F denote the geometric
Frobenius in I'rp /Ir. Kottwitz has defined a surjective morphism

kg : G=G(F) — m(G) = (m(G),)".

We refer to [KP23, Chap. 11] for the detailed construction of this map. The
following properties of this map are particularly relevant to our problem :

o The kernel G° := kerk is the subgroup of G generated by parahoric sub-
groups and, for any facet o € B,, the parahoric group G, is the pointwise
stabilizer of o in GV (and actually also the stabilizer).

e The inverse image G! := n&l(m(G)tors) is the subgroup of G generated by
compact subgroups and, for any facet o € B,, the compact open group G
introduced above is the pointwise stabilizer of ¢ in G*.

In particular, we have GL C G' and G, = G° N GL.

Now let ¥ be the diagonalizable algebraic group scheme over Z[%] associated
to the finitely generated abelian group m1(G). Its maximal subtorus W% is the
usual “torus of unramified characters” of G, while the quotient \Ilé = Vg /UL is
the diagonalizable group scheme associated to the finite group 71 (G)sors-

For any Z[%]—algebra R, the group ¥¢(R) = Hom(m(G), R*) identifies via kg
to a group of R-valued characters of G, hence it acts on the category Repr(G) by
twisting the representations. Since this action is R-linear, this induces in turn an
action of U (R) by automorphisms of R-algebra on 3r(G), hence an action on the
set Idemp(3r(G)) of idempotents of 3r(G).

The idempotents of 3¢(G) are known to be supported on the set of compact
elements [Dat03, Cor. 2.11|, hence in particular on G, so the action of ¥¢(C)
on Idemp(3¢(G)) factors through an action of \I/é((C) = Hom(m1(G)tors, C*) =
mo(¥q,c). Further, the depth 0 projector €¢ is known to be supported on the set of
topologically unipotent elements [BKV16, Cor 1.9 b)|, hence in particular on G,
S0 ¢ is invariant under the action of \I’é(@)

3.4.1. Lemma. For each [tf] € T/ ~, the associated idempotent efg in 3c(G) is

invariant by \IJé((C) Moreover, the primitive idempotents that refine €y form a
single \Ifé((C)-orbit.

Proof. Pick (o,m) € [t]. We know that the direct factor category Rep([ct] (G) is gener-
ated by the projective object indga (7). For any 1) € U(C), we have indga (m)@y =
indgg (T®@Yg,) = indgo (7). Tt follows that Rep([é] (G) is stable under the action of
¥ (C), hence e[y is invariant.

Now, we also know that any block of Rep([ct] (G) is generated by a projective object

1

1
of the form ind&, (7!) where 7! is an irreducible constituent of indgz (). But any

two such irreducible constituents are twists of one another by a character of G. /G, .
Moreover, the latter group embeds in 71 (G)iors via kg, hence the restriction map

\I/é((C) — Hom(GL/G,,C>) is surjective, and the second statement of the lemma
follows. O

This lemma implies that the only central idempotents of depth 0 in 3¢(G) that
are invariant by \I/é((C) are the ep for T'C T/ ~. Now, observe that the action of
\Ifg(Z[%]) on Idemp(371,(G)) factors over \I/é(Z[%]), which is equal to \Ilé((C) In

other words, \Ilé((C) preserves the subset of idempotents of 3¢(G) that belong to
32[1](G). Therefore, we can restate Corollary as follows :



14 JEAN-FRANCOIS DAT AND THOMAS LANARD

3.4.2. Corollary. The only \Pé(Z[%])-invam'ant idempotent of 6032[%](6') is €o.

Hence \Ifé(Z[%]) acts transitively on the set of primitive idempotents of €0371,(G).
p

In order to better understand the action of \Ifé(Z[%]) on Idemp(EOBZ[%](G)),

write this group as a product \Ifé(Z[%]) = \Ilé(Z[%])p X \Ilg(Z[%])p/ of a p-group

and a p’-group.
3.4.3. Lemma. Any idempotent of 3z1,(G) is invariant under \I!é(Z[%])pu
P

Proof. Let & be an idempotent of 37 1,(¢) and assume, without loss of generality,

that it is primitive. On the other hand, let ¢ € \I'é(Z[l%])p/ and assume, without

loss of generality that i has order a power of some prime ¢ # p. In order to

prove that ¢ - ¢ = ¢, it suffices to find a non-zero object (V, ) in {—:Repz[l](G)
p

such that 7 ® ¢ ~ m. Since the composition of ¥ : 71 (G)tors — Z[%]X with
any morphism Z[%] — Ty is trivial, it suffices to find a non-zero object (V,7) in
sRepZ[%](G) whose Z[%}—module structure factors over a morphism Z[%] — Fy.
But eRepz 1 1(G) certainly contains a representation of the form e.ind$ (Z[%D for
some open pro-p-subgroup H of G. Such a representation being projective as a
Z[%]—module, its reduction modulo any maximal ideal containing ¢ is non-zero and

satisfies the desired property. O

In the next statement, we say that a torus T defined over F' is Pr-induced if the
action of the wild inertia subgroup Pr permutes a basis of X, (T).

3.4.4. Corollary. Suppose that p does not divide |71 (Gqer)| and that the torus Gay,
is Pr-induced. Then e is a primitive idempotent of 32[%](G)'

Proof. From the inclusions X,(Ts) C Xu«(Taer) € X«(T) and the isomorphism
Xi(T)/Xe(Taer) — Xi(Gap), we get an exact sequence m1(Gaer) — m1(G) —
X.(Gap). Applying Ip-coinvariants, we get an exact sequence m1(Gder)r, —
71 (G) 1 = Xi(Gap)ip- Since m1(Gyer) is finite, this sequence remains exact on
the torsion subgroups and the p-torsion subgroups, so we get an exact sequence

T1(Gder) I, p—tors — T1(G) 1y p—tors = Xu(Gab) 1y p—tors-
Our first assumption implies that 71 (Gder) 15 p—tors = 0, and our second assumption
implies that X.(Gab)1p p—tors = (Xs«(Gab)Pp tors)1, = 0. Here the first equality
is because Ir acts on Pg-coinvariants through a finite quotient of order prime to
p, and the vanishing claim is because X, (G,p)p, is torsion free since Gy, is Pp-
induced. Therefore 71 (G)p—tors = {0}, thus \I/é(Z[%])p = {1} and we conclude
thanks to Lemma and Corollary O

The following example shows that the condition on 71 (Gger) is not always nece-
ssary for €y to be a primitive idempotent.

3.4.5. Example. Let G = PGL, with split F-structure, so that 7 (G) = Z/pZ
and kg : G — m1(G) is induced by the valuation of the determinant. Then
any irreducible supercuspidal representation of the form 7 = indgGLp(OF)(fr) is
invariant under torsion by the group \IJ{;((C) of characters of 71 (G), hence so is the
only primitive idempotent ¢ of 5032[%] (@) such that em # 0, showing that eg = € is
primitive by Corollary

The next paragraph generalizes the above observation about PGL,.
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3.5. Special points. Let S be a maximal split torus in G and let Z be the cen-
tralizer of S in G. This is a Levi component of a minimal F-rational parabolic
subgroup of G. By |[KP23| Lemma 11.5.6], we know that the canonical map
m(Z) — m1(G) is injective on torsion subgroups. Correspondingly, the map
ol (Z[ ) — vf (Z[f]) is surjective. Note that the quotient of ¥ (Z[ ]) thus ob-
tained is 1ndependent of the choice of S since all maximal split tori are G—conjugate.

3.5.1. Lemma. The action of \I/f( [%]) on the set of idempotents of 5032[;](6’)
factors over the quotient \IIQ(Z[E]).

Proof. Let S and Z be as above, and pick a special vertex z in the apartment
corresponding to S in B. By [KP23|, Prop. 7.7.5] (which reconciles our definition of
Gl with the one they introduce in the beginning of their section 7.7), we have GL =
G.Z*', hence GL/G, = Z1/Z° = 711(Z)ors- Therefore, if we pick a supercuspidal

representation 7 of G, and an irreducible subquotient ! of 1nd ( ), then the

corresponding primitive central idempotent €, 1) € 3¢(G) is 1nvar1ant under the

kernel of \Ilé((C) — \Ilé((C) So let € be the unique primitive idempotent of 32[%] (G)

such that €., x1) = €(4,71). By uniqueness, ¢ is also invariant under the kernel of

\I/é(Z[%]) — \I/];(Z[%]) Since \I/é(Z[%]) acts transitively on the set of primitive

idempotents of £937(1)(G), we conclude that this action factors over \I/J;(Z[%]) O
p

3.6. The quasi-split case : group side. In this subsection, we assume that G is
quasi-split over F'. In this case, the centralizer Z of a maximal split torus S is itself
a torus, that we denote by T := Z. Accordlng to Lemma [3.5.1] Lemma [3.4.3] and

Corollary the natural action of W/ (Z[ 1) = Hom(71(G)1ors, Z[%]X) mduces a

transitive action of \I@(Z[;})p = Hom(m (T)p_tors,Z[%]x) on the set of primitive
idempotents of 6032[;] (G). Therefore, if T is Pp-induced, we have 71 (T")p—tors = 1,
so it follows that ¢( is a primitive idempotent in 32[ 1 ](G). In particular we have

proven the following result.

3.6.1. Theorem. Suppose that G is quasi-split and tamely ramified over F. Then
€0 is a primitive idempotent of 32[;](G).
p

This theorem mirrors the fact that the space of tamely ramified Langlands pa-
rameters for G is connected over Z[%], under the same hypothesis, as proved in
[DHKM20, Theorem 4.29]. Below we will prove more generally that for any quasi-
split G, there is a natural bijection between connected components of the space of
tamely ramified Langlands parameters for G and the set of primitive idempotents
in 5032[%1(61). On the G-side, the main result is the following one.

3.6.2. Theorem. Suppose G is quasi-split. Then the action of\I/ (Z [ )p on the
set of primitive idempotents of 5032[1](G) is simply transitive.

Proof. Let G' := ﬁal(m (T)p—tors) be the inverse image in G of m1(T)p—tors bY ke
(recall from above that the map 1 (T') — 71 (G) is injective on torsion subgroups).
As already mentioned, it does not depend on the choice of S. For any facet ¢ in
B,, we denote by G’ the pointwise stabilizer of o in G’, so that we have G/ :=
GL N G'. If o belongs to the apartment associated to S, then G/, = G,T" where
T =TNG = m;l(ﬂ'l(T)p_tors). Since G,NT = TP, we have a short exact sequence

(3.1) Gy = Gy GF < G JGF — 1y (T)p—tors.
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We claim that this sequence splits canonically and, more precisely, that there is a
canonical decomposition

(3.2) G, /Gt = (Gs/GY) x m(T)p—tors-

To see this, recall that there are canonical smooth Op-models G, C G/, of G such
that

(1) Go(Or) = G, and G, (OF) = G, and (Go)g, = ((GL)g,)°.
(2) G/ contains the canonical model TV of T such that T/(Of) = T’, and

mo(T'5,) — mo((G5), ), while we also have 7o(T'F, ) — 71(T) 1, p—tors-
(3) Denote by G, the quotient of the special fiber (G, )g, of G, by its unipotent

radical. Then the short exact sequence (3.1)) is obtained by taking the F-
rational points of the sequence

Gy = G, = m((GL)F,) = T1(T) 1 p—tors-

(4) Denote by T’ the quotient of the special fiber of T/ by its unipotent radical.
Then T' < G/, induces a closed immersion T/ < G/ and T' N G, = T
is a maximal torus of G, and we have an exact sequence

T =TnG, =T — m0((T)5,) = T1(T) 14 p—tors-

Here, G, is the model that would be denoted by GY in the notation of [KP23|
§8.3], while G/ is a variant of the model denoted by G° there (the latter would
correspond to n&l(m(T)tors) rather than Hal(m(T)p_mrS)), whose existence fol-
lows from Proposition A.5.23 (3) of loc. cit. Then (2) follows from (p-primary
variants of) Corollaries 11.1.6 and 11.2.1 there. Items (3) and (4) follow from the
constructions and Corollary 11.7.2 of loc. cit.

Now, since T' " (F,) is a p/-torsion abelian group, H' (1 (T)p—tors, T’ (Fp)) = {1}
so there exists a splitting ¢ : 71 (T) 1, p—tors — T(Fp) of the last exact sequence.
This ¢ also provides a splitting m1(T) 1, p—tors — G‘T,(Fp) of the short exact se-
quence in item 3 above. But since T’ is an abelian group scheme, we see that the
conjugation action of 71(T)7, p—tors o0 G, through ¢ fixes pointwise the maximal
torus T”° of G,. It follows that this action is inner and, more precisely, given by
a morphism from m1(T), p—tors to the image of T’ in the adjoint group of G,.
But such a morphism has to be trivial since m1(T)r, p—tors 1S & p-group. Hence
the action of 71 (T) /. p—tors through ¢ is trivial on G, and we get a decomposition
Gify = G, x T1(T) 1y p—tors: Moreover, such a decomposition is unique because
Hom(m1 (T) 1y p—tors, Z(Go(Fp))) = {1}. Taking F,-rational points, we get the
claimed canonical decomposition .

Now, this decomposition implies that the pro-p-radical G;+ of G!_ surjects
onto 1 (T)p—tors- For any character ¢ of m1(T")p—tors, We therefore get a central
idempotent e¥ € HZ[;](G;) supported on G/ *, and we have e} = P e?. Again,
these idempotents do ;ot depend on the choice of apartment containing o, since they
are given by the restriction of a global character of G’ to (G)*. In particular, they
are invariant under the action of G, in the sense that e}, = ge¥g~! for all g € G.

Moreover, if x is a vertex of the facet o, the pro-p-radical G;Jr of G/, is a normal
subgroup of G, " and we have G, " = G/, 7 G. In terms of idempotents, it follows
that e¥ = efe? for all ¢. But then, the proof of [LanI8, Prop. 1.0.6] shows that
the system of idempotents (e¥),cp, is consistent in the sense of [MS10, Def. 2.1]
(note that in [Lanl8, Prop. 1.0.6] the idempotents are assumed to be supported on
the parahoric subgroups while here we allow support on a slightly bigger subgroup,
but this is harmless for the argument there). Then, [MS10, Thm. 3.1] tells us
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that the full subcategories Rep%[l](G) = {V € Repz1,(G), V = 3,5, eV} are
Serre subcategories of Rep%[l](G). Since for all o,1 and v’ we have @ # ' =

eﬁef = 0, these categories are pairwise orthogonal. Moreover, since for all o we
have ef =3, e?, we actually get a decomposition Rep%[%](G) =1l Rep%[%](G).
Correspondingly, we get a decomposition of £y as a sum of pairwise orthogonal
idempotents ¢y = Zw 5%’ in 32[%](G). Finally, identifying mo(¥r), to the group of
characters of m1 (1) p—tors, OUr constructions make it clear that the action of 7o (¥r),

is given by 9 - sg’, = 5g¢/. Since we already know that the action of mo(¥r), is

transitive on primitive idempotents, we conclude that each 56/’ has to be primitive,
and that this action is simply transitive. O

3.6.3. Remark. Before turning to the dual side, we give an interpretation of the
group \I/é(Z[%])p (through which the natural action of \I!G(Z[%]) on the set of
idempotents in 6032[%](G) factors) in terms of the group mo(¥¢) of connected
components of Y. Indeed, more generally, for any diagonalizable group scheme
A = D(M) over Z[%], we have an exact sequence A° — A — my(A) where
A° = D(M/Mp_tors) is the “maximal” connected diagonalizable subgroup scheme
of A and my(A) = D(Mp_tors) is a (constant) finite étale diagonalizable group
scheme. In the case A = ¥qg, we thus see that mo(Ug) = D(m1(G)p—tors) is
the finite constant group scheme associated to the abstract group \I/é(Z[%])p =

Hom(my (G)p,tors,Z[%]X), and we shall abuse a bit notation by writing

mo(¥a) = WLZ[L]),.

3.7. The quasi-split case: dual group side. We now explain how the descrip-
tion of primitive idempotents in the last theorem matches the parametrization of
connected components of the space of tamely ramified Langlands parameters for
G. We will use the definitions and notation from [DHKM20]|. Let us denote by G
“the” dual group of G, considered as a split reductive group scheme over Z[%]. Pick
a pinning p := (’iﬁ, X =3 cav Xa) of é, whose underlying Borel pair is dual
to a Borel pair (T,B) where T is as above (a maximally split maximal torus) and
B is a Borel subgroup of G defined over F. Then the F-rational structure on G
induces an action of Wr on the root datum of é, which induces in turn an action
of Wr on G preserving the pinning p.

3.7.1. Remark. Since the morphism Ts. — T is dual to the morphism T — ’f‘ad,
we see that 71 (G) is the group of characters of the center Z(G) = ker(’f‘ — 'i‘ad).
It follows in particular that

Ve = (Z(G)F)r,
as group schemes over Z[%].
Then, using the last remark, we may slightly abusively identify

VL(Z[L]), = mo((Z(G)TF)e).

Let us now choose a topological generator o of the tame inertia group I /Pr and
denote by WY the inverse image in W of the discrete subgroup of Wr/Pr gener-
ated by ¢ and Frobenius. According to [DHKM20, §1.2], there is an affine scheme

~

Zl(Wg, G )tame Over Z[%] that classifies 1-cocycles Wr — G whose restriction to
Pr is étale-locally conjugate to the trivial 1-cocycle ¢ = 1p, : Pr — G. This
affine scheme carries an action of G over Z[%] and factors as

ZI(WI(U)V é\")tame - é XGPF Zl(WI(;?a)

1PF
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where Z1(W2, G) p,. 15 the closed subscheme of Z' (W2, G)tame Where the restric-
tion of parameters to P is trivial, and where GP* is the closed subgroup scheme
of G fixed by Pr. Note that, in the notation of [DHEKM20], G'# would be denoted
Cg(9) if ¢ = 1p,. Since Z'(Wp,G)1,, = ZY W2/ Pr,GFF), we get on quotient
stacks

(3.3) ZY WP, G)iame/G = Z'(W/Pp,GIr)/GPF.

We are interested in parametrizing the connected components of these stacks. Ac-
cording to Proposition A.13 and Theorem A.12 of [DHKM20|, the Z[%}]—group
scheme GPr has split reductive neutral component GPr° and finite constant
70(GPF). We are going to prove that the fibers of the morphism

(3.4) ZY WO/ Pp, GPr) /GFF 5 HY (WD) Pr, mo(GFF)),

(whose target is a finite discrete scheme) are the connected components of its source.
To this aim, observe that the diagonalizable group scheme Z'(W2/Pr, Z (G)P )
acts on the scheme Z'(W2/Pp, GPr ) by multiplication of cocycles, and this action
is compatible with GFr-(twisted) conjugation on Z*(W?2/Pp, GF*). Furthermore,
the map y is equivariant if we let Z1 (W2 / Pp, Z(G)Pr) act on HY (WY /Pp, To(GFr))
through H*(W2/Pg, mo(Z(G)FF)).

3.7.2. Lemma. With the foregoing notation :
(1) The natural map mo(TFF) — 7o(GPF) is a bijection. In particular,
7o(GPF) is an abelian p-group.
(2) The natural map

0(2(G)'")e = H'((F),mo(2(G)'")) — H'(WP/Pr,mo(Z(G)"™))

s an isomorphism.
(3) Similarly, we have an isomorphism 71'0(T e — HY WY/ Pr, WO(TPF))
(4) The natural map Hl(Wg/PF,F()(Z(G)PF)) — H! WF/PF,F()(TPF)) is
surjective.

Proof. (1) This is Proposition 4.1 d) of [Hail5].

(2) Recall first that mo(Z(G)FF) is a finite abelian p-group, and the action of I
on it is through a cyclic p’-group. It follows that Hl(I?;v/PFﬂTo(Z(é)PF)) = {1}
and therefore the map H'((F), mo(Z(G)Pr)Ir) —s HY (WY Pp, mo(Z(G)Fr)) is an
isomorphism. So it remains to see that 7o (Z(G)Fr)Ir = mo(Z(G)r), which follows
from the fact that (X*(Z(CA-}))pF,p tors ) Ip = X*(Z(CA}))IF p—tors since, as above, the
action of Ir on X*(Z(é))pF is through a cyclic p’-group.

(3) Apply (2) to T instead of G.

(4) By (2) and (3), it suffices to prove surjectivity of m(Z(G)Ir) — mo(TIr),
i.e. injectivity of X*(’f‘)IF,p_tors — X*(Z(CA}))IF,p_tors. For this, we start from
the exact sequence

X*(Taa)1, — X*(T)1, — X*(Z(G));,, — 0

and we observe that, since X *(’fad) has a basis permuted by I (given by sim-
ple roots), its co-invariants X*(T,q);, are a free abelian group. Moreover, since
the above sequence is exact on the left once we tensor it by Q, it follows that
X*(Tad)IF — X*(T)IF is injective, hence X* (T)IF’tors — X*(Z(G))IF’tors is
injective too. U
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The following theorem, together with the identification Wf}(i[])p = ﬂo((’f‘IF)F) =
7o(TI7)¢ of Remark is the dual companion of Theorem

3.7.3. Theorem. The connected components of Z1(W2, é)tamc/é are the fibers of
the map p of through the identification :

ZY WO/ Pp,GFP)/GFF = ZY (WY, G)iame /G-

Moreover, the action of Z*(W2 /P, Z(G)Pr) on ZY WP/ Pg, GPr) induces a sim-
ply transitive action of mo(TIF)g on connected components of Z* (W2, G)rame/G.

Proof. By construction, the action of Z1(W2 /P, WO(Z(a)PF)) on ZY (WP Pr, Wo(éPF))
induces an action of HY(W2/Pp,7o(Z(G)Fr)) on the set of fibers of the map .
By (1) and (4) of the last lemma, the latter action is transitive, and actually fac-
tors over a simply transitive action of HY(WQ/Pp, mo(TFr)) = mo(TI)e. So,
to prove the theorem, it suffices to prove that one fiber of y is connected. The
fiber u=1(1) of the trivial cohomology class is Z*(W2/Pr, GPro)/NGPr°, where
NGPro = {g € aPF,gflo(g) € CA}PF’O,gle(g) € (/’;PF’O}. So we are left with
proving that Z1(W2/Pp, aPF’O) is connected. In order to apply [DHKM20, Thm.
4.29], we need to show that the action of Wy /Iy on GFr° fixes a pinning. Thanks
to [Hail5l, Prop 4.1.(a)], we know that (BFr-e TFr°) is a Borel pair of GPF° (over
Z[%]) and even that (BFr°, TFr° X) is a pinning of GP°, at least over Z[ﬁ].
Note that this Borel pair and this pinning are clearly stable under Wr/Ir. So,
when p = 2, we are done. On the other hand, as explained in the proof of [Hail5]
Prop 4.1], the failure for X to provide a pinning of GPre in characteristic 2 only
happens when an orbit of simple roots under P contains two roots that add up to a
root. In this case, the orbit must have even order, and this can’t happen if p is odd.
So, in all cases, (]/?\)PF’O,TPF’O,X) is a pinning of GPr° and we get connectedness
of ZYW?/Pp, GFr°) from [DHKM20, Thm. 4.29). O

3.8. Proofs of Theorem and Corollary Finally, Theorem
follows from Theorems [3.7.3] and [3.6.2] through the identification of Remark
once we choose base points in the respective sets of connected components. Any
“natural” such choice should be compatible with parabolic induction from the mini-
mal Levi subgroup T of G. But the Langlands correspondence for tori tells us that
the principal block of Rep%[ 1 }(T ) (i.e. the one that contains the trivial represen-
tation) should match the principal component of Z1(W, ’i‘)tamc (i.e. the one that
contains the trivial parameter).

As for Corollary let  be a depth 0 irreducible representation of G with co-

efficients in an algebraically closed field L over Z[}%]. By Theorem there is an
element ¢ € Wé(i[%]) that provides a character ¢ : G — m(G) — Z[%]X — L~

of G that belongs to the same block of Rep%[ 1 }(G) as wm. Hence the Fargues-

Scholze parameters ¢, and ¢, are L-points of the same connected component of
the Z[%]—scheme Z'W9, G) J G. Since Z' (WY, G)ame is a sum of connected
components, all we need to do is to check that ¢y is tamely ramified. By compat-
ibility with parabolic induction [FS21 IX.7.2] this parameter is the pushforward

along ZL (W2, T) ) T — Z' (W%, G) // G of the Fargues-Scholze parameter of the

1
character 63.¢7 of T, where B is any Borel subgroup of G with Levi T and dp
is its modulus character. Since the Fargues-Scholze correspondence for tori is the
1
usual one [FS21} IX.6.4], and the character ¢3.¢)7 is trivial on T9, its parameter is
actually trivial on I, see [Misl5, Thm 1], hence a fortiori on Pg.
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3.9. On the general case. We do not know an analogue of Theorem in the
non quasi-split case, but we believe that Theorem holds for all groups that
split over a tamely ramified extension, or more generally, that have a Pp-induced
maximal F-torus. The following example is not accounted for by our different
results.

3.9.1. Ezample. Let D be a division algebra of dimension p? over F' and G the inner
form of PGL,, such that G = D* /F*. Here, m(G) = Z/pZ and kg : G — m1(G)
is induced by the valuation of the reduced norm map. Note that G° = O}/Ox
surjects onto Fy, /FX and that the action of a suitable generator of G' /G = Z/pZ
on F)%, is via the ¢""-power map (relative Frobenius over F,). Hence, if yx is any
character of F, /FX in general position for the action of Frobenius, the induced
representation m := indgg joxX is irreducible, of depth 0, and invariant under

twisting by characters of G'/G°. Therefore, the unique primitive idempotent & of
5032[1](6?) such that er # 0 is also invariant under such twisting, showing that
P

€0 = € is primitive by Corollary

3.10. Deligne-Lusztig parameters. Assuming that G is quasi-split and tamely
ramified, we recall here the Deligne-Lusztig invariant m — s, used in Theorem
This is a direct generalization of [Lanl8| §3.4] to the tamely ramified setting,
and with slightly different notation.

Transfer maps. Besides Deligne-Lusztig theory itself, the main point is the
existence of natural morphisms of finite schemes :

(3.5) (@, ) G )= 5 (G a7 ) G)F=0"

for all facets o of B. Here, 7 is a topological generator of tame inertia, all duals
are taken over Z, and G, denotes the reductive quotient of the special fiber of
the Bruhat-Tits Op-model G, of G attached to 0. To define the map 7 let
S be a maximal split torus of G whose apartment contains o, and write also S
for its schematic closure in G, which is a maximal split torus therein. Denote
by T, the centralizer of S in G, and by N, its normalizer. These are smooth
group schemes over O and the quotient W, := N, /T, is an étale group scheme.
By our assumptions on G, the generic fiber T of T, is a maximal F-torus of G
that is tamely ramified and contained in a Borel subgroup defined over F', while
the reductive quotient T, of its special fiber identifies to a maximal torus in G,.
Actually, T, is the connected Neron model of T over O and T, is the toric part
of its special fiber (compare [KP23| Prop. 8.2.4|), so that, taking cocharacters over
geometric points, we have an Fr-equivariant identification X, (T,) = X.(T)F =
X.(T)7 (cf [KP23, B.7.9]). Moreover, the latter identification is equivariant with
respect to the specialization map W, (kr) — W, (F)’F (where bars denote a
choice of algebraic closure). Then, going to the dual tori, this means that we have

an Fr-equivariant identification T, = (’f‘) Ip = (T)T that is equivariant with respect
to the map Wg (T,) <+ Wg(T)™ provided by the identifications Wg (T,) =
W, (kr) and Wg(T) = W, (F). Then the desired map (3.5) is induced by the
following Fr-equivariant composition :

G, /G =Ty Wz (To) — (1), W () = (Tx7) [ Ng(T), = (Gxr) /G

vzhere Na(’f‘)T ={n ¢ N@(’T),m'(n)_l € T}. Here, we have implicitly chosen

T,, resp. ’f‘, as the maximal torus entering the construction of the dual group

~

G, resp. CA-‘r, with its pinned action by Fr, resp. (r,Fr). The fact that the last
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map is an isomorphism is a twisted version of the Chevalley-Steinberg theorem, see
for example [DHKM20, Prop. 6.6]. The above construction of the map is
independent of the choice of S, since a different choice would be conjugated under
G, (Or), leading to compatible identifications between cocharacter groups of the
generic and special fibers of the centralizer, as in [Lanl8, Lemme 3.2.1].

Specialization. The isomorphism (T (A) / WA(A)T S GxT / G shows that
(é X T/ G)Fr:(') is a finite scheme. More precisely, if N denotes the exponent
of the image of WA( )T x (B ) in Aut( )r» we see that the natural morphism
(T),[¢N — 1] — ((’/I\‘)T J Wa(T T)7)=0)" is surjective (where the bracket denotes
the kernel of ¢t — thfl). This also allows us to speak of the order of a geometric
point of (é X T/ G)Fr:(‘)q as the order of any lift in (T)T

Now, by finiteness we have specialization maps

(G x 1) G)P=OYK) — (G x 1 ) G)F=0"(k)

for any discrete valuation ring A with fraction field K and residue field k. When A

is stricly henselian, this map has a section coming from the canonical lifting of roots

of unity from % to A, which induces a section (’f‘)T[qN —1](k) — (T)T[qN —1](A).
From this we see that for each prime ¢ # p we have a specialization map

(G x 7 ) G)F=0"(@Q) — (G =7 ) G)"=0"(Fy)

with a natural section with image the subset of elements of prime-to-f order in the
left hand side. Actually the composition of the section with specialization is the
map that takes a conjugacy class s to its “prime-to-£ order” (or “f-regular”) part.
Similarly, for each maximal ideal of Z containing ¢, we have a specialization map

(Gx 7/ G)™=0"@) — (G xr ) G)F=V'(F)
with a section as above.

The Deligne-Lusztig decomposition of Rep%(G), For ¢ # p, Deligne-Lusztig

theory provides a surjective map Irrg, (Go(kr)) — (Gg J) G,)=0"(Q,) whose
fibers are called “Deligne-Lusztig geometric series”. This map only depends on
a choice of isomorphism (kr)* =~ (Q/Z),, which we have already made when
picking the topological generator 7 of Ir/Pp. In particular, it 1s 1nvar1ant under

automorphisms of Q, and descends to a map Ier(G (kp)) — (G //G )Fr=0"(@)

canonically. For a Q-point ¢ of (G / G »)F=0" we denote by eJ@ the central

idempotent of Q[G, (kr)] that selects the corresponding geometric series. It is

known [CEO4, Thm 9.12] that if ¢ has prime-to-£ order then },, #,=t et/@ is (-

integral, in the sense that it belongs to Z) [G, (kr)]. This allows us to associate a
central idempotent QZ,FZ in F¢[G, (kr)] to any F,-point t of (G / G o) =07 (this
is independent of the choice of a maximal ideal of Z(@)). In this way we get for any
algebraically closed field L over Z[%] a decomposition

1= > €or
t€(Gy J/Go)Fr=(11 (L)

of the unit in L[G,(kr)] as a sum of pairwise orthogonal central idempotents.
Now, for s € (G x 7 J/ G)=0"(L), we write €51 = Yopss €y Then the
same argument as in [Lanl8| §3.4] shows that o — €51, 1s a O-consistent system of
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idempotents, so that we have a decomposition

Repy (G) = 11 Repy,(G)
se(Gxr)G)Fr=0)9(L)
where Repy (G) := {V € Rep(G),V =3 cq. € f,LV} When L has characteristic

0, the relation to the decomposition of Section [3.2)is the following. For t = (o,75)

a cuspidal pair, denote by ¢, _ the L-point of (G // G »)F=0" corresponding to the
geometric Deligne-Lusztig series of To, and by s the image of ¢, by the map (3.5).
Then we have Rep! (G) C Rep§ (G).

Deligne-Lusztig parameters. For any irreducible depth 0 smooth L-representation
7, we define s, to be the unique L-point of (G x 7 / G)™=0)" such that 7 is an
object of Repj™ (G). The map 7 +— s, satisfies the following :

(1) Suppose 7 is a subquotient of a parabolically induced module i%(p) for
some F-parabolic subgroup P = MU of G. Let P = MU be a Wr-stable
parabolic subgroup of G corresponding to P. Then s, is the image of s,
by the natural map (M x 7 J M)F=0)" — (G x 7 ) G)Fr=0)",

(2) Suppose L = Q, and 7 is f-integral (i.e. admits an admissible Z,-model L),
and let 7 be any irreducible constituent of the reduction of L, to F,. Then
sz is the image of s, by the specialization map (G x 7 J G)F*=0)"(Q,) —
(G x 7)) G)F=0"(F,).

(3) Suppose L = ?@ and let 5§, be the image of s, by the natural section
(G x 7 ) G)F=O"F,) — (G x 7 ) G)F*=0'(Q,). Then there is an (-
integral m € Irrg, (G) with sz = §, and such that = is a constituent of
the reduction of (any stable lattice in) #. The same statement holds if we
replace Q, by Q and consider specialization and section maps associated to
a choice of a prime ideal £ of Z containing /.

Property (1) is proved like in [Lanl8 Théoréme 4.4.3] and property (2) follows
from the constructions. For property (3) we may use (1) and an inductive argument
to reduce to the case where 7 is supercuspidal. It is then a Jordan-Hdélder factor of
a finite length F,-representation of the form T = indg 47y for some supercuspidal

my € Itrg, (G2). Denote by t., € (G m//G )Fr ()*(Fy) its Deligne-Lusztig geometric

series and #., its natural lift in (G / el 2)F=0"(@Q,). Then 7, is certainly a
Jordan-Holder constituent of the reduction to Fy of some 7, € Irrg, (G5) with

tz. = tr.. By supercuspidality of m,, 7, also has to be cuspidal, so that the
induction p := indgz 77 is cuspidal with finite length and trivial central character,
hence is f-integral. Since 7 is a Jordan-Holder constituent of the reduction of p,
it is a constituent of the reduction of some irreducible subquotient 7 of p. By
construction, sx is the image of ¢x_, hence equals 5.

3.11. Proof of Theorem As explained in the introduction, we argue on
the semi-simple rank of G. In rank 0, G is a torus and the result follows from
the compatibility of FSy,. with local class field theory (which follows from the
construction just as for the f-adic version FS; in [FS21, Prop. IX.6.5]). For general
G, the compatibility of 7 — ¢, (7) and 7 — s, with parabolic induction and dual
Levi functoriality allows us to focus on 7w supercuspidal. After maybe twisting by
an unramified character of G, we may assume that 7 is defined over the closure of
the prime subfield of L, which reduces the problem to the cases L = F; or L = Q.
But property (3) above reduces the case L = F, to the characteristic 0 case, i.e.
we may assume L = Q. Finally, after maybe twisting, we may assume that our
supercuspidal 7 has an admissible model over Z[%].
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We now argue on the number n, of prime divisors of the order of s,. Assume
first that n, > 1 and let ¢ be such a prime number, and (s,)*) the prime-to-¢
part of s;. Pick any maximal ideal £ of Z containing ¢. By properties (2) and (3)
above, there is an L-integral ' € Irrg(G) with s = (57)® and whose reduction
has a common irreducible constituent 7 with the reduction of 7. By our induction
hypothesis, any prime dividing the order of ¢,/ (7) divides that of sgf), hence the
same is true for any prime dividing the order of ¢z (7). But pz(7) is the image of
©x(7) by the specialization map, so any prime dividing the order of ¢, (1) either
divides that of ¢z (7) or is ¢, hence it divides the order of s;.

It remains to deal with the case n, = 1, i.e. w unipotent. In this case, Proposition
[3:I1.3] below provides us with two prime numbers ¢; # {5 different from p and
two mon-cuspidal unipotent representations mi,my € Irr@(G) such that 7 ~p, m;
for i = 1,2. Recall from Remark [3:34] that this means that for any embeddings
Q — @gi, T ®g @gi and T; Qg @L’i belong to the same block of Rengi (G). By the

description of connected components of Z1(W2, CA})ZZ in [DHKM20, Thm 4.8], it
follows that we have (go,r)'[«;- = w”i)u’;" On the other hand, by our induction
hypothesis, @, (7) is trivial, i.e. @, is trivial on Ip. So we see that ¢, is trivial
on both I} and 2, hence it is trivial on I and @, (7) = 1.

We are now left to prove Proposition B.I1.3] and we start with a finite field
analogue:

3.11.1. Proposition. Let us assume that g # 2. Let G be a finite reductive group
with positive semisimple rank, and m € Irr(GF) a unipotent cuspidal representation
of G. Then there exists two prime numbers {1,y # p, €1 # o and two non-cuspidal
unipotent representations T,y € Irr(GF) such that 7 ~p, m and © ~g, .

Proof. Similarly as in Section (the bijection £(GFy,1) =+ £(GF,1) on unipo-
tent representations is compatible with the respective ¢-block partitions; and a
group of adjoint type is a direct product of restriction of scalars of simple groups),
we can restrict ourselves to the case where G is a simple group.

There are no unipotent cuspidal in type A,,. If G has type ?A,, (resp. B,,, resp.
C,, resp. D, resp. 2D,,) there is no cuspidal unipotent unless n = s(s +1)/2 — 1
(resp. n = s(s+ 1), resp. n = s(s+ 1), resp. n = s2, resp. n = s2) for some s and
in this case there is only one.

If ¢ is odd, by [CE04, Thm. 21.14], £(G,1) is included in the principal 2-block,
so we can take ¢1 = 2.

If g is even, then take for /1 a prime divisor of g+ 1. As in the proof of Theorem
we can use the combinatorics of Lusztig symbols and -sets to classify unipo-
tent characters and compute their d-series. When d = 2, a symbol corresponds to
a 2-cuspidal representation if it is itself a 1-cocore. In the above list of cuspidal
characters, none of them are 1-cocores, so there are no 2-cuspidals. This means
that they all belong to the same 2-series as another unipotent character, hence ¢4
suits.

Similarly, the cuspidal unipotent of 2A,, (resp. B,, C,,D,, or 2D,,) is in the
same 6-series (resp. 4-series) as another unipotent representation, so we can take
¢ such that ¢ is of order 6 (resp. 4) mod ¢s by Theorem m This ¢ also suits.

We are left with the exceptional groups Fy, 3Dy, G, Eg, 2Eg, E7 and Eg. For
these groups, we use a weaker version of Theorem that works also with bad
primes, [Eng00, Thm. A]. It states that if two unipotent representations are in the
same d-series then they are in the same block. Then, looking at tables, for each
unipotent cuspidal representation 7w but two exceptions, we can find two distinct
integers dj, do, different from 2, and such that 7 is in the same d;-series as a non-
cuspidal representation (see Table with the notations of [Car93| §13.9]). It
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then remains to pick any primes /1, {5 such that ¢ has order d; modulo ¢; thanks
to Theorem

The two exceptions are the representations Go[l] and Gz[—1] in the notation
from [Car93l §13.9]. The representation Gs[l] (resp. Gz[—1]) is in the same 2-
series and 3-series (resp. 2-series and 6-series) as the trivial representation, so we
can at least take ¢; such that ¢ has order 3 modulo ¢; (resp. ¢ has order 6 modulo
£1). If there also exists f5 such that the order of ¢ modulo f5 is 2 then we are
done. So the only issue is when ¢ = 2¥ — 1, for some integer k£ > 2. In this case,
we set fo = 2 and we conclude with [Eng00, Thm. A.bis|, which implies that two
unipotent representations in the same d-series are in the same 2-block, if d is the
order of ¢ modulo 4, which is 2 here.

unipotent cuspidal representations (dy,ds)

F4[*1]7 ES[fl] (67 8)

F4[_i], F4[i]’ Eg [ZL ES[_i] (47 8)
[9} F4[02]7 E6 [0]7 E6 [92}7 E8[92]a ES[G] (37 6)

F4 ’
GQW]? G2[€2]7 3D4[1]7 2E6[9}7 2E6[02]

Fi[1], Eg[1 (4,6)
F/[1], E4[1], Ee[1] (3,4)
E;[{], E7[—{] (6,14)
Eg[-0?], Es[—0] (6,24)
Es[¢"], Es[€], Eg[€?], Es[¢] (5,10)
*Dy[—1] (6,12)

TABLE 1. Suitable pairs (di,d2) for unipotent cuspidal represen-
tations of exceptional groups

O

3.11.2. Remark. The assumption ¢ # 2 is needed here for the simple group 2As,.
For instance the group Us(Fs) has three unipotent representations, the trivial, the
Steinberg and o a cuspidal representation. When ¢ = 3, these three representations
are in the same 3-block. However, the cardinal of Us(F3) is 233%, so every odd
prime ¢ # 3 is banal, and {c} is a ¢-block.

3.11.3. Proposition. Let G be a reductive group of positive semisimple rank over
F, and assume that kp # Fy. Let m be a unipotent supercuspidal Q-representation
of G. Then there exist prime numbers {1 # {y different from p and two non-cuspidal
unipotent representations mi, Ty € Irr@(G) such that m ~y, m; fori=1,2.

Proof. Let t € ¥ be an unrefined depth 0 type such that © € Rep%](G). Neces-

sarily, t = [z, 7,] with 2 a vertex, since 7 is supercuspidal. Then G, has positive
semisimple rank hence, by Proposition there exist two prime numbers /1, £5
and two unipotent non-cuspidal representations 7, ; and 7 2 of éz(k r) such that
T~y Tgp1 and my ~p, Tyo. Let ¢ € {1,2}. We consider the cuspidal support of
7z,; which is of the form (G, (kr), ;) and provides us with an unrefined depth 0
type t; € T. Let T be a minimal subset of ¥/ ~ containing t such that the idem-
potent e is ¢;-integral, i.e. belongs to SZ(m (G). As in Proposition we have
t; € T, hence the summand ETRep@(G) contains non cuspidal irreducible repre-
sentations. Although er need not be primitive, we deduce from Lemma [3.4.1] that

\Ilé(@) acts transitively on the set of primitive idempotents in 32([‘) (G) that refine
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er. It follows that any ¢;-block inside ETRep@(G) contains non cuspidal irreducible

representations. This applies in particular to the one that contains 7. O
REFERENCES
[BKV16] Roman Bezrukavnikov, David Kazhdan, and Yakov Varshavsky, On the depth r Bern-

[BMM93]

[BVO04]
[Car93]
[CE94]

[CE04]

[Con14]
[Dat03]
[Dat09]
[DHKM20]
[Eng00]

[Fen24]
[FS21]

[Hail5]
[His97]
[HS90]
[HS92]

[KP23]|

[Lan18|
[Lan23]
[Mis15]
[Mor99]

[MS10]

[Sch25]

[SS19]

stein projector, Selecta Math. (N.S.) 22 (2016), no. 4, 2271-2311. MR 3573958
Michel Broué, Gunter Malle, and Jean Michel, Generic blocks of finite reductive
groups, Astérisque (1993), no. 212, 7-92, Représentations unipotentes génériques et
blocs des groupes réductifs finis. MR 1235832

Geo. D. Birkhoff and H. S. Vandiver, On the integral divisors of a™ — b™, Ann. of
Math. (2) 5 (1904), no. 4, 173-180. MR 1503541

R.W. Carter, Finite groups of lie type: Conjugacy classes and complex characters,
Wiley Classics Library, Wiley, 1993.

Marc Cabanes and Michel Enguehard, On unipotent blocks and their ordinary char-
acters, Invent. Math. 117 (1994), no. 1, 149-164. MR 1269428

, Representation theory of finite reductive groups, New Mathematical Mono-
graphs, vol. 1, Cambridge University Press, Cambridge, 2004. MR 2057756
(2005g:20067)

Brian Conrad, Reductive group schemes, Autour des schémas en groupes. Vol. I,
Panor. Syntheéses, vol. 42/43, Soc. Math. France, Paris, 2014, pp. 93-444. MR 3362641
Jean-Frangois Dat, Quelques propriétés des idempotents centrauxr des groupes p-
adiques, J. Reine Angew. Math. 554 (2003), 69-103. MR 1952169

, Finitude pour les représentations lisses de groupes p-adiques, J. Inst. Math.
Jussieu 8 (2009), no. 2, 261-333. MR 2485794

Jean-Frangois Dat, David Helm, Robert Kurinczuk, and Gilbert Moss, Moduli of
langlands parameters, 2020.

Michel Enguehard, Sur les £-blocs unipotents des groupes réductifs finis quand £ est
mauvais, J. Algebra 230 (2000), no. 2, 334-377.

Tony Feng, Modular functoriality in the local langlands correspondence, 2024.
Laurent Fargues and Peter Scholze, Geometrization of the local langlands correspon-
dence, 2021.

Thomas J. Haines, On Satake parameters for representations with parahoric fized
vectors, Int. Math. Res. Not. IMRN (2015), no. 20, 10367-10398. MR 3455870
Gerhard Hiss, Decomposition matrices of the Chevalley group F4(2) and its covering
group, Comm. Algebra 25 (1997), no. 8, 2539-2555. MR 1459575

Gerhard Hiss and Josephine Shamash, 3-blocks and 3-modular characters of G2(q),
J. Algebra 131 (1990), no. 2, 371-387. MR 1058552

_, 2-blocks and 2-modular characters of the Chevalley groups G2(q), Math.
Comp. 59 (1992), no. 200, 645-672. MR 1134731

Tasho Kaletha and Gopal Prasad, Bruhat-Tits theory—a new approach, New
Mathematical Monographs, vol. 44, Cambridge University Press, Cambridge, 2023.
MR 4520154

Thomas Lanard, Sur les £-blocs de niveau zéro des groupes p-adiques, Compositio
Mathematica 154 (2018), no. 7, 1473-1507.

, Unipotent £-blocks for simply connected p-adic groups, Algebra Number The-
ory 17 (2023), no. 9, 1533-1572. MR 4637509

Manish Mishra, Langlands parameters associated to special mazimal parahoric spher-
ical representations, Proc. Amer. Math. Soc. 143 (2015), no. 5, 1933-1941.
Lawrence Morris, Level zero G-types, Compositio Math. 118 (1999), no. 2, 135-157.
MR 1713308

Ralf Meyer and Maarten Solleveld, Resolutions for representations of reductive p-adic
groups via their buildings, J. Reine Angew. Math. 647 (2010), 115-150. MR 2729360
(2011m:22031)

Peter Scholze, Geometrization of the local langlands correspondence, motivically,
2025.

Vincent Sécherre and Shaun Stevens, Towards an explicit local Jacquet-Langlands
correspondence beyond the cuspidal case, Compos. Math. 155 (2019), no. 10, 1853—
1887. MR 4000000




26 JEAN-FRANCOIS DAT AND THOMAS LANARD

JEAN-FRrRANGOIS DAT, INSTITUT DE MATHEMATIQUES DE JUSSIEU, SORBONNE UNIVERSITE —
UNIVERSITE DE Paris — CNRS, 4 Prace Jussieu, 75252 PARIS CEDEX.
Email address: jean-francois.dat@imj-prg.fr

THoMAs LANARD, CNRS, LABORATOIRE DE MATHEMATIQUES DE VERSAILLES, UNIVERSITE
Paris-Sacray, UVSQ, 78000, VERSAILLES, FRANCE
Email address: thomas.lanard@uvsq.fr



	1. Main results
	1.1. Some applications to the Fargues-Scholze semisimple correspondence.

	2. Finite groups
	2.1. General facts on blocks of finite groups
	2.2. Blocks of finite reductive groups
	2.3. d-series

	3. p-adic groups
	3.1. The depth 0 summand
	3.2. (un)refined depth 0 types
	3.3. Systems of idempotents
	3.4. The Kottwitz map
	3.5. Special points
	3.6. The quasi-split case : group side
	3.7. The quasi-split case: dual group side
	3.8. Proofs of Theorem 1.0.4 and Corollary 1.1.1
	3.9. On the general case
	3.10. Deligne-Lusztig parameters
	3.11. Proof of Theorem 1.1.2

	References

